OMUS[®]C14

-Diese Seite ist absichtlich leer gelassen-

-This page is intentionally left blank-

1 Inhaltsverzeichnis

1	Inha	altsverzeichnis	}
2	Beschreibung5		
3	Арр	likationsbeispiele	;
3	8.1	Zulässige Applikationen	5
4	Best	telldaten	,
5	Sich	erheitsbestimmungen und Errichtungshinweise	•
5	5.1	Inhalt der EU-Konformitätserklärung)
5	5.2	Errichtungshinweise)
5	5.3	Anwendungsbereich)
5	5.4	UL-Hinweis)
6	Bed	ien- und Anzeigeelemente11	L
7	Ans	chlüsse	•
- 7	'.1	Netzanschluss und Leitungsschutz	,
7	·.2	Montage	2
7	'.3	Standard-Anschluss	3
	7.3.1	3-Phasige Konfiguration	3
	7.3.2	1-Phasige Konfiguration	ł
7	' .4	IO-Link-Anschluss	ł
7	' .5	Leitungen anschließen	5
	7.5.1	Schraubanschluss	5
	7.5.2	Push-in-Anschluss15	5
8	Ans	teuerung des OMUS®C1416	;
9	EPL	AN-Symbol16	;
10	Serv	viceTool	,
11	Ме	nüführung 17	,
12			•
12	vvdi	nungen und Storungen	,
1	.2.1	Warnungen)
1	.2.2	Storungen)
1	.2.3 7	Quittieren von Wieldungen	L I
13	Zuri	ucksetzen auf werkseinstellungen21	-
14	Aus	lösekennlinie (kalter Zustand)22	2

15	Auslösekennlinie (warmer Zustand)23		
16	Abk	kühlzeit	24
17	Zulä	lässige Überstromfaktoren	25
18	Dera	rating	25
19	IO-L	Link-Schnittstelle	26
1	9.1	Zyklische Eingangsdaten (PDIN)	
1	9.2	Zyklische Ausgangsdaten (PDOUT)	28
1	9.3	Azyklische Daten (ISDU-Parameter) – IO-Link-Standard	29
1	9.4	Azyklische Daten (ISDU-Parameter) – Gerätespezifisch	30
	19.4.2	4.1 Gerät – Konfiguration	30
	19.4.2	4.2 Gerät – Messdaten	30
	19.4.3	4.3 Dreiphasiger Betrieb – Konfiguration	30
	19.4.4	4.4 Einphasiger Betrieb – Konfiguration L1	
	19.4.5	4.5 Einphasiger Betrieb – Konfiguration L2	32
	19.4.6	4.6 Einphasiger Betrieb – Konfiguration L3	33
1	9.5	System Kommandos – IO-Link-Standard	33
20	Tech	chnische Daten	34

2 Beschreibung

Der elektronische Schalter OMUS[®]C14 ist ein kompaktes Schaltgerät mit 22,5 mm Baubreite für 1-phasige und 3-phasige resistive Lasten. Der elektronische Schalter beinhaltet folgende Funktionsblöcke:

- Überlastschutz
- Elektronisches Schalten ohmscher Lasten
- Schaltfrequenz bis 20 Hz
- Elektronischer Kurzschlussschutz ohne Sicherungstausch
- Galvanische Unterbrechung
- Strom-, Spannungs-, Leistungsmessung
- Anbindung an IO-Link-Systeme

i

Stellen Sie sicher, dass Sie immer mit der aktuellen Dokumentation arbeiten. Diese steht unter der Adresse https://pim.woehner.de/ am Artikel zum Download bereit.

Dieses Dokument gilt für die im Kapitel "Bestelldaten" aufgelisteten Produkte.

3 Applikationsbeispiele

3.1 Zulässige Applikationen

Bild 1 Zulässige Schaltungsvarianten 3-phasig ohne Neutralleiter

Der elektronische Schalter ist für den Betrieb in resistiver Lastverschaltung gemäß dem obigen Beispiel geeignet.

ACHTUNG: In allen Fällen ist eine symmetrische Drehstromversorgung auf der Speiseseite zu verwenden, eine 1-phasige Einspeisung wird nicht unterstützt und führt zu Fehlermeldungen.

- Im Fall 1-phasiger Lasten ohne Neutralleiter (<u>Bild 2</u>) ist dafür Sorge zu tragen, dass alle am Stromfluss beteiligten Phasen angesteuert werden, um unbeabsichtigte Fehler zu vermeiden. Weiterhin kann der Rückleiter beliebig gewählt werden, es ist nicht zwingend Phase 2 zu verwenden.
- Der Rückleiter kann ebenfalls eine Impedanz enthalten, das Ersatzschaltbild ergibt sich dann gemäß <u>Bild 1</u>.

Bild 2 Beispiel für 1-phasige Lasten ohne Neutralleiter

Bild 3 Schaltungsbeispiel für 1-phasige Lasten mit Neutralleiter

- Ist ein Neutralleiter vorhanden, so kann die Last im 3-phasigen Betrieb oder im 1-phasigen Betrieb geschaltet werden.
- Die Konfiguration/Parametrierung des 1-phasigen Betriebs erfolgt ausschließlich via IO-Link oder ServiceTool. Eine Parametrierung über das Display ist derzeit nicht möglich.

4 Bestelldaten

			Gewicht	
Elektronikbaustein	Beschreibung	VE	kg/100	ArtNr.
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 168
Connect	Funktionen: Lasten schalten,			
2,6 A	Überlastschutz, Kurzschlussschutz;			
Panel	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 169
Connect	Funktionen: Lasten schalten,			
2,6 A	Überlastschutz, Kurzschlussschutz;			
30Compact	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 170
Connect	Funktionen: Lasten schalten,			
2,6 A	Überlastschutz, Kurzschlussschutz;			
60Classic	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 171
Connect	Funktionen: Lasten schalten,			
2,6 A	Überlastschutz, Kurzschlussschutz;			
CrossBoard	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 172
Connect	Funktionen: Lasten schalten,			
6,6 A	Überlastschutz, Kurzschlussschutz;			
Panel	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 173
Connect	Funktionen: Lasten schalten,			
6,6 A	Überlastschutz, Kurzschlussschutz;			
30Compact	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 174
Connect	Funktionen: Lasten schalten,			
6,6 A	Überlastschutz, Kurzschlussschutz;			
60Classic	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link;	1	-	36 175
Connect	Funktionen: Lasten schalten,			
6,6 A	Überlastschutz, Kurzschlussschutz;			
CrossBoard	hohe Schaltfrequenz			

			Gewicht	
Elektronikbaustein	Beschreibung	VE	kg/100	ArtNr.
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 176
Connect Plus	und Display;			
2,6 A	Funktionen: Lasten schalten,			
Panel	Uberlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 177
Connect Plus	und Display;			
2,6 A	Funktionen: Lasten schalten,			
30Compact	Uberlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 178
Connect Plus	und Display;			
2,6 A	Funktionen: Lasten schalten,			
60Classic	Überlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 179
Connect Plus	und Display;			
2,6 A	Funktionen: Lasten schalten,			
CrossBoard	Überlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 180
Connect Plus	und Display;			
6,6 A	Funktionen: Lasten schalten,			
Panel	Überlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 181
Connect Plus	und Display;			
6,6 A	Funktionen: Lasten schalten,			
30Compact	Überlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 182
Connect Plus	und Display;			
6,6 A	Funktionen: Lasten schalten,			
60Classic	Überlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			
OMUS®C14	Elektronischer Schalter mit IO-Link	1	-	36 183
Connect Plus	und Display;			
6,6 A	Funktionen: Lasten schalten,			
CrossBoard	Überlastschutz, Kurzschlussschutz;			
	hohe Schaltfrequenz			

			Gewicht	
Zubehör	Beschreibung	VE	kg/100	ArtNr.
EQUES®Panel	Tragschienenadapter	1	7,2	36 112
EQUES®Compact	Sammelschienenadapter 30Compact	1	7,2	36 113
EQUES®Classic	Sammelschienenadapter 60Classic	1	7,2	36 114

5 Sicherheitsbestimmungen und Errichtungshinweise

5.1 Inhalt der EU-Konformitätserklärung

Hersteller: Wöhner GmbH & Co. KG, Mönchrödener Straße 10, 96472 Rödental, Germany

Die aktuelle EU-Konformitätserklärung steht Ihnen beim jeweiligen Artikel als Download auf unserer Homepage <u>www.woehner.de</u> zur Verfügung.

5.2 Errichtungshinweise

- Beachten Sie bei allen Arbeiten am Gerät die nationalen Sicherheits- und Unfallverhütungsvorschriften.
- Werden die Sicherheitsvorschriften nicht beachtet, können Tod, schwere Körperverletzung oder hoher Sachschaden die Folge sein.
- Während des Betriebs stehen Teile der elektrischen Schaltgeräte unter gefährlicher Spannung.
- Nur eine Elektrofachkraft darf das Gerät in Betrieb nehmen, montieren, ändern oder nachrüsten.
- Schalten Sie das Gerät vor Beginn der Arbeiten spannungsfrei.
- Entfernen Sie während des Betriebs keine Schutzabdeckungen von elektrischen Schaltgeräten.
- Bewahren Sie die Produktdokumentation auf
- Setzen Sie das Gerät keiner mechanischen und/oder thermischen Beanspruchung aus, die die beschriebene Grenze überschreitet.
- Bauen Sie das Gerät zum Schutz gegen mechanische oder elektrische Beschädigungen in ein entsprechendes Gehäuse mit einer geeigneten Schutzart nach IEC / EN 60529 ein.
- Bauen Sie das Gerät gemäß den in der Einbauanweisung beschriebenen Anweisungen ein. Ein Zugriff auf die Stromkreise im Inneren des Geräts ist nicht zugelassen.
- Reparieren Sie das Gerät nicht selbst, sondern ersetzen Sie es durch ein gleichwertiges Gerät. Reparaturen dürfen nur vom Hersteller vorgenommen werden. Der Hersteller haftet nicht für Schäden aus Zuwiderhandlung.
- Die sicherheitstechnischen Daten können Sie dieser Dokumentation und den Zertifikaten entnehmen.
- Setzen Sie ausschlie
 ßlich Netzteile mit sicherer Trennung mit SELV / PELV-Spannung nach EN 50178 / VDE 0160 (SELV / PELV) ein. In diesen wird ein Kurzschluss zwischen Primär- und Sekundärseite ausgeschlossen.
- Betrieb im verschlossenen Schaltschrank!
- Beachten Sie den minimal zulässigen Laststrom:
 2,6 A-Geräte: ≥ 100 mA; 6,6 A-Geräte: ≥ 100 mA

5.3 Anwendungsbereich

 Dies ist ein Produkt f
ür Umgebung A (Industrie): in Umgebung B (Haushalt) kann dieses Ger
ät unerw
ünschte Funkst
örungen verursachen. In diesem Fall kann der Anwender verpflichtet sein, angemessene Ma
ßnahmen durchzuf
ühren.

5.4 UL-Hinweis

!

WARNUNG: Gefahr durch elektrischen Schlag und Brandgefahr!

- Das Auslösen mit der Fehlermeldung "Short Circuit" kann ein Hinweis darauf sein, dass ein Fehlerstrom unterbrochen wurde. Um die Gefahr eines Brandes oder elektrischen Schlages zu reduzieren, überprüfen Sie bitte das Schaltgerät auf äußere Anzeichen einer Schädigung und tauschen es gegebenenfalls aus.
- Wenn Sie die Anweisungen nicht beachten, können Tod, schwerwiegende Verletzungen oder Sachbeschädigungen die Folge sein.

PACHTUNG: Verwenden Sie für mindestens 75°C zugelassene Kupferleitungen für den Einsatz mit einer "low voltage, limited energy, isolated power supply"

 Das Gerät ist f
ür den Einsatz mit einer "low voltage, limited energy, isolated power supply" ausgelegt.

SCCR (Einzel- und Gruppeninstallation)

 Geeignet f
ür die Anwendung in Stromkreisen mit maximal 100 kA eff. symmetrischen Strom und ≤ 480 V.

FLA 2,6 A (480 V AC), 6,6 A (480 V AC).

6 Bedien- und Anzeigeelemente

- 1 Steuerstecker
- 2 Haupttaster
- 3 Laststecker
- 4 Sammelschienenadapter 30Compact
- 5 USB-C Buchse

Bild 5 Bedien- und Anzeigeelemente OMUS[®]C14 Connect Plus

7 Anschlüsse

!

WARNUNG: Lebensgefahr durch Stromschlag! Niemals bei anliegender Spannung arbeiten.

7.1 Netzanschluss und Leitungsschutz

- Beachten Sie beim Anschluss des zwingend notwendigen 3-Phasen-Netzes unbedingt die Klemmenbezeichnung.
- Betreiben Sie die Steuerspeisespannungs- und Steuerspannungseingänge mit Stromversorgungsmodulen gemäß IEC 61131-2 (max. 5 % Restwelligkeit).
- Um bei langen Steuerleitungen die induktive bzw. kapazitive Einkopplung von Störimpulsen zu vermeiden, empfehlen wir die Verwendung von abgeschirmten Leitungen.

7.2 Montage

 Rasten Sie das elektronischen Schaltgerät auf das jeweilige Sammelschienensystem 30Compact, 60Classic oder direkt auf das CrossBoard[®].

Bild 6 Montage auf Adaptern und CrossBoard

- 1 Sammelschienenadapter 30Compact
- 2 Sammelschienenadapter 60Classic
- 3 Tragschienenadapter
- 4 Elektronikbaustein
- 5 CrossBoard[®]

7.3

Standard-Anschluss

- Die Standard-Verbindung wird über einen 16-poligen Steckverbinder realisiert. Schließen Sie die Leitungen an den Steckverbinder am Schaltgerät an.
- Um die an das Gerät angeschlossenen Last in Betrieb zu setzen, <u>müssen</u> Sie dem Gerät durch anlegen von 24V zwischen EN+ und EN- die Freigabe erteilen.
- Erst wenn am Enable-Eingang (Klemmen 5 und 7) ein g
 ültiges Signal anliegt, nimmt das Ger
 ät Ansteuerbefehle entgegen.
- Sie können eine dauerhafte Freigabe durch Brücken der Klemmen (6) und (5) sowie der Klemmen (8) und (7) erteilen.

7.3.1 3-Phasige Konfiguration

2	Ansteuerung Last	1	24 V / L+
4	Nicht verbunden	3	GND / L-
6	24 V / L+	5	Enable +
8	GND / L-	7	Enable -
10	Reset	9	Nicht verbunden
12	GND für Eingänge	11	C/Q (IO-Link)
14	98 (Störung Schließer)	13	96 (Störung Öffner)
16	12 (Warnung Öffner)	15	95/11 (Common)

Bild 7 Steckverbinder Steuerleitungen – 3~ Konfiguration

- Die Steuereingänge Ansteuerung Last und Reset sind galvanisch vom restlichen 24 V Steuerkreis getrennt.
- Gemeinsamer Bezugspunkt f
 ür diese zwei Signale ist Klemme GND f
 ür Eing
 änge. Die Eing
 änge Enable + und Enable - sind ebenfalls galvanisch vom 24 V Steuerkreis und den Steuereing
 ängen Ansteuerung Last und Reset getrennt.
- Es handelt sich hierbei um eine Basisisolierung. Die Klemmen GND f
 ür Eing
 änge und GND d
 ürfen miteinander verbunden werden.

WARNUNG:Verwenden Sie keine Steuerspannungen >24V
an den Steuerleitungen. Dies kann zu Schäden am Gerät führen.

Deutsch.

7.3.2 1-Phasige Konfiguration

2	Ansteuerung L1	1	24 V / L+
4	Ansteuerung L2	3	GND / L-
6	24 V / L+	5	Enable +
8	GND / L-	7	Enable -
10	Ansteuerung L3	9	Nicht verbunden
12	GND für Eingänge	11	C/Q (IO-Link)
14	98 (Störung Schließer)	13	96 (Störung Öffner)
16	12 (Warnung Öffner)	15	95/11 (Common)

Bild 8 Steckverbinder Steuerleitungen – 1~ Konfiguration

- Die Steuereingänge Ansteuerung L1, L2 und L3 sind galvanisch vom restlichen 24 V Steuerkreis getrennt.
- Gemeinsamer Bezugspunkt f
 ür diese drei Signale ist Klemme GND f
 ür Eing
 änge. Die Eing
 änge Enable + und Enable - sind ebenfalls galvanisch vom 24 V Steuerkreis und den Steuereing
 ängen Ansteuerung L1, L2 und L3 getrennt.
- Es handelt sich hierbei um eine Basisisolierung. Die Klemmen **GND für Eingänge** und **GND** dürfen miteinander verbunden werden.

WARNUNG:Verwenden Sie keine Steuerspannungen >24V
an den Steuerleitungen. Dies kann zu Schäden am Gerät führen.

ACHTUNG: Die Konfiguration/Parametrierung des 1-phasigen Betriebs erfolgt ausschließlich via IO-Link oder ServiceTool. Eine Parametrierung über das Display ist derzeit nicht möglich.

7.4 IO-Link-Anschluss

- Die IO-Link-Verbindung wird über denselben 16-poligen Steckverbinder realisiert wie beim Standard-Anschluss.
- Für den Betrieb mit IO-Link werden lediglich die Klemmen 1, 3, 5 8 und 11 benötigt. Die verbleibenden Klemmen können optional verwendet werden.
- Um die an das Gerät angeschlossene Last in Betrieb zu setzen, <u>müssen</u> Sie dem Gerät über den Enable-Eingang die Freigabe erteilen (s. 7.3 Standard-Anschluss).

7.5 Leitungen anschließen

7.5.1 Schraubanschluss

Bild 9 Schraubanschluss

- Isolieren Sie die Einzeladern um 8 mm ab.
- Stecken Sie den Leiter in die entsprechende Anschlussklemme
- Ziehen Sie die Schraube in der Öffnung über der Anschlussklemme mit einem Schraubendreher fest.

7.5.2 Push-in-Anschluss

Bild 10 Push-in-Anschluss

- Starre oder flexible Leiter mit Aderendhülse stecken Sie direkt in den Klemmraum (A).
- Flexible Leiter ohne Aderendhülse kontaktieren Sie sicher, indem Sie zuvor die Feder mit dem Druckschalter öffnen (**B**).
- Betätigen Sie ebenfalls den Druckschalter, um den Leiter zu lösen (B).
- Nutzen Sie bei Bedarf eine Haltevorrichtung, um den Stecker während des Anschließens zu fixieren.

8 Ansteuerung des OMUS®C14

- Das Gerät kann sowohl über die Steuereingänge (Pin 2, 4 und 10) als auch über die IO-Link Schnittstelle (siehe 19) angesteuert werden.
- Das Gerät reagiert auf Flankenwechsel an den Eingängen. Das heißt ein Wechsel des Pegels z.B. von Low auf High an einem der Steuereingänge ruft eine Reaktion des Gerätes hervor. Ebenso wird bei IO-Link ein Wechsel des Steuerbits von 0 auf 1 als Wechsel detektiert und die Ansteuerung wird entsprechend umgesetzt.

Der OMUS[®]C14 reagiert immer auf den zuletzt erkannten Flankenwechsel und besitzt somit eine zeitliche Sensitivität bzgl. der Eingänge. Dabei ist es unerheblich, ob der Ansteuerungswunsch über einen Steuereingang oder über IO-Link detektiert wird.

9 EPLAN-Symbol

Bild 11

!

EPLAN-Symbol OMUS[®]C14 – 3-phasige Konfiguration

Bild 12 EPLAN-Symbol OMUS[®]C14 – 1-phasige Konfiguration

 Das Paket mit den zugehörigen EPLAN-Symbolen kann unter der Downloadsektion der OMUS®C14 Produktwebseite (https://pim.woehner.de/) heruntergeladen werden

10 ServiceTool

- Mit Hilfe des ServiceTools kann der OMUS®C14 am PC konfiguriert werden. Die Verbindung zwischen Gerät und PC erfolgt über ein USB-C Kabel.
- Die aktuelle Version des ServiceTools kann jeweils unter folgendem Link heruntergeladen werden: <u>https://www.motus-c14.de/de/servicetool</u>
- Das ServiceTool besitzt eine Nutzerrechteverwaltung und beschreibt folgende Rollen:
 - o Der Benutzer "Kunde" ist nicht Passwort geschützt und besitzt reine Leserechte.
 - Der Benutzer "Supervisor" ist mit dem Passwort "C14Supervisor" geschützt und besitzt Schreibrechte zur Konfiguration des Gerätes.
- Zur weiteren Einführung und Unterstützung wurde ein Videotutorial erstellt. Dieses kann über den folgenden QR-Code abgespielt werden:

(Link: <u>https://www.youtube.com/watch?v=whw3TzYHktQ</u>)

11 Menüführung

- Mit Hilfe des Haupttasters (1) navigieren Sie durch das Hauptmenü.
- Dieses besteht aus einem Homescreen, einem Einstellungsmenü und drei Messscreens.
- Mit Hilfe der Pfeiltaster (2 und 3) können Sie durch das Einstellungsmenü scrollen und Einstellungen mit Hilfe des Haupttasters (1) vornehmen.

Haupttaster und Pfeiltaster

OMUS[®]C14 Bedienungsanleitung

Auch hier kann mit Hilfe des untenstehenden QR-Codes ein Videotutorial abgespielt werden, welches Sie bei der Menüführung des OMUS[®]C14 unterstützt:

(Link: https://www.youtube.com/watch?v=tSXEwfVC4hl)

Bild 16 Übersicht der Anzeige - OMUS®C14 Connect+

- ACHTUNG: Bei Aktivierung des Wartungsmodus nimmt das Gerät keine Ansteuersignale mehr entgegen. Dazu darf die Last zum Zeitpunkt der Aktivierung nicht angesteuert sein!
 - ACHTUNG: Bei Arbeiten an den Lastleitungen oder der Last selbst muss zusätzlich der Laststecker abgezogen werden!

!

12 Warnungen und Störungen

12.1 Warnungen

W1402	Unterstrom Last (einstellbar)
W1403	Überspannung Versorgung AC (einstellbar)
W1404	Unterspannung Versorgung AC (einstellbar)
W1405	Übertemperatur Gerät (>60 °C)
W1406	Thermische Überlast (abhängig von Nennstrom)
W1407	Asymmetrische Last (einstellbar)
W1408	Phasenausfall - Last
W1409	Ausfall Versorgung AC
W1413	Unterspannung Steuerkreis DC (<20,0 Vdc)
W1414	Überspannung Steuerkreis DC (>28,8 Vdc)
W1415	Fehlende Gerätefreigabe (Enable-Klemmen)
W1416	Maximale Schaltfrequenz überschritten

12.2 Störungen

E1402	Unterstrom Last (einstellbar)
E1403	Überspannung Versorgung AC (einstellbar)
E1404	Unterspannung Versorgung AC (einstellbar)
E1405	Übertemperatur Gerät (>80 °C)
E1406	Thermische Überlast (abhängig von Nennstrom)
E1407	Asymmetrische Last (einstellbar)
E1408	Phasenausfall Last
E1409	Ausfall Versorgung AC
E1410	Kurzschluss Last
E1411	Gerätefehler
E1412	Interner Kommunikationsfehler
E1413	Unterspannung Steuerkreis DC (<17,0 Vdc)
E1414	Überspannung Steuerkreis DC (>30,0 Vdc)
E1416	Maximale Schaltfrequenz überschritten
E1417	Ausfall IO-Link Kommunikation

12.3 Quittieren von Meldungen

Bei Auftreten einer Warnung kann die angeschlossene Last normal weiterbetrieben werden.

- Eine Warnung kann <u>nicht</u> manuell quittiert werden.
- Sobald die Ursache einer Warnung beseitigt ist, quittiert sich die Warnung selbst.

!	WICHTIG:	Eine Störung führt zur Abschaltung der L	.ast!
---	----------	--	-------

WICHTIG: Vor dem Wiedereinschalten muss die Ursache einer Störung behoben werden.

 Störungen können durch 2-sekündiges Betätigen des Haupttasters, über den analogen Reseteingang oder über IO-Link quittiert werden.

13 Zurücksetzen auf Werkseinstellungen

• Es ist möglich das Gerät über das ServiceTool oder das Display in die Werkseinstellungen zurückzusetzen.

14 Auslösekennlinie (kalter Zustand)

Die dargestellte Auslösekennlinie stellt eine Übersicht der Zeiten dar, nach welcher der OMUS[®]C14 aufgrund einer aufgetretenen Überlast abschaltet. Im kalten Zustand wird bei der thermischen Kapazität von einem Startwert gleich 0 ausgegangen.

Bild 17 Auslösezeit (kalter Zustand)

Tabelle 1: Auslösezeit [s] (kalter Zustand)

/ _N	TC RESISTIVE
1,2	10
1,5	3,56
2	1,62
3	0,66
4	0,38
5	0,24
6	0,18
7	0,14
8	0,12
9	0,1
10	0,08
11	0,08
12	0,06
13	0,06
14	0,06
15	0,06

15 Auslösekennlinie (warmer Zustand)

Die dargestellte Auslösekennlinie stellt eine Übersicht der Zeiten dar, nach welcher der OMUS®C14 aufgrund einer aufgetretenen Überlast abschaltet. Im warmen Zustand wird davon ausgegangen, dass das Gerät zuvor über einen längeren Zeitraum im Nennbetrieb lief (>2h).

Bild 18 Auslösezeit (warmer Zustand)

Tabelle 2: Auslösezeit [s] (warmer Zustand)

/ _N	TC RESISTIVE
1,2	5,26
1,5	1,2
2	0,46
3	0,18
4	0,1
5	0,06
6	0,04
7	0,04
8	0,04
9	0,02
10	0,02
11	0,02
12	0,02
13	0,02
14	0,02
15	0,02

16 Abkühlzeit

Die dargestellte Abkühlzeit stellt eine Übersicht der Zeiten dar, nach welcher die thermische Kapazität des OMUS®C14 einen bestimmten Wert erreicht, wenn das Gerät durch Überlast abgeschaltet wurde. Dabei stellt die thermische Kapazität eine Modellierung der thermischen Auslastung der Last dar. Der Fehler "Überlast" kann nur quittiert werden, wenn der Wert der thermischen Kapazität unter 75 % gefallen ist.

Auslöseklasse / Thermische Kapazität	TC RESISTIVE
100 – 75 %	3,46
100 – 50 %	8,3
100 – 25 %	16,6
100 – 0 %	100

17 Zulässige Überstromfaktoren

- Der Anlaufstrom der Last soll 56 A (OMUS®C14-6,6A) bzw. 35 A (OMUS®C14-2,6A) nicht übersteigen
- Größere Ströme können zum Ansprechen der internen Schutzschaltungen führen

18 Derating

2,6 A-Geräte: Gerät senkrecht, Lastabgang unten

Umgebungstemperatur [°C]	35	55	70
Max. Laststrom [A], angereiht mit Abstand ≥22,5 mm	2,6	2,6	-
Max. Laststrom [A], angereiht ohne Abstand	2,6	2,4	-

6,6 A-Geräte: Gerät senkrecht, Lastabgang unten

(dynamische Lüfterregelung)

Umgebungstemperatur [°C]	35	55	70
Max. Laststrom [A], angereiht mit Abstand ≥22,5 mm	6,6	6,6	-
Max. Laststrom [A], angereiht ohne Abstand	5,3	5,3	-

19 IO-Link-Schnittstelle

Die IO-Link-Schnittstelle besteht aus zyklischen und azyklischen Prozessdaten, welche zur Konfiguration und Steuerung des OMUS®C14 verwendet werden. Die zyklischen Daten dienen der Steuerung des OMUS®C14 und dem Rücklesen von internen Geräteinformationen. Diese werden innerhalb einer Periode von ca. 2ms zwischen dem IO-Link-Master und dem OMUS®C14 ausgetauscht. Unterschieden wird dabei zwischen zyklischen Eingangsdaten (Process Data In, PDIN), welche vom OMUS®C14 an den IO-Link-Master geschickt werden und Geräteinformationen beinhalten, und zyklischen Ausgangsdaten (Process Data Out, PDOUT), die zur Steuerung des OMUS®C14 verwendet werden können.

Die azyklischen Prozessdaten dienen der Konfiguration des OMUS®C14, sowie zur Übertragung zusätzlicher Informationen, welche nicht in Echtzeit übertragen werden müssen.

Eine Auflistung der bereitgestellten zyklischen und azyklischen Prozessdaten ist in den folgenden Unterkapiteln dargestellt.

Zur Einbindung des OMUS®C14 in eine Anlagensteuerung wurde ein Videotutorial auf Basis eines Siemens TIA-Projektes erstellt und kann mit folgendem QR-Code abgespielt werden:

(Link: https://www.youtube.com/watch?v=NdPRjBY6UHw)

19.1 Zyklische Eingangsdaten (PDIN)

Zyklische Eingangsdaten (PDIN) wird die Art von Daten genannt, welche vom OMUS®C14 an den IO-Link-Master geschickt werden und Geräteinformationen beinhalten.

Subindex	Bit offset	Name	Datentyp
1	72	Bit 7: Phase L3 aktiv	Bool
		(1: aktiv, 0: inaktiv)	
		Bit 6: Phase L2 aktiv	Bool
		(1: aktiv, 0: inaktiv)	
		Bit 5: Phase L1 aktiv	Bool
		(1: aktiv, 0: inaktiv)	
		Bit 4: Freigabe Enable Signal	Bool
		(1: Freigabe erhalten,	
		0: Freigabe fehlt)	

		Bit 3: Reserviert	Bool
		Bit 2: Ansteuerung - 3~ aktiv	Bool
		(1: aktiv, 0: inaktiv) Bit 1: Warnung erkannt	Bool
		Bit 0: Fehler erkannt (1: Fehler. 0: Gerät OK)	Bool
2	64	Bit 70: Fehlerart 0: Gerät in Ordnung 1: Kurzschluss 2: Überlast 3: Phasenasymmetrie Last 4: Phasenausfall Last 5: Unterstrom Last 6: Phasenausfall Versorgung 7: Unterspannung Versorgung 8: Überspannung Versorgung 9: Übertemperatur 10: Unterspannung Steuerleitung 11: Überspannung Steuerleitung 12: Gerätefehler 13: Interner Kommunikationsfehler 14: Keine Enable Freigabe erkannt (Phasenspezifische Anzeige, abhängig von Phasen ID: Subindex 4. Bit 7 – 6)	Enum
3	56	Nennstrom [Einheit in 100mA] (Phasenspezifische Anzeige im einphasigen Betrieb, abhängig von Phasen ID: Subindex 4, Bit 76)	uint8
4	48	Bit 76: Phasen ID 0: Phase L1 1: Phase L2 2: Phase L3 Bit 4 - 5: Reserviert Bit 30: Auslöseklasse 8: Auslöseklasse Resistiv (Phasenspezifische Anzeige im einphasigen Betrieb, abhängig von Phasen ID: Subindex 4, Bit 76)	Enum
5	32	Laststrom [Einheit in 10mA] entspricht Leiter-Leiter Spannung: Phasen ID: L1; Verkettete Spannung L1L2 Phasen ID: L2; Verkettete Spannung L2L3 Phasen ID: L3; Verkettete Spannung L3L1 (Phasenspezifische Anzeige, abhängig von Phasen ID: Subindex 4, Bit 76)	uint16

		(Phasenspezifische Anzeige, abhängig von Phasen ID: Subindex 4, Bit 76)	
7	8	Thermische Kapazität [Einheit in %] (Phasenspezifische Anzeige im einphasigen Betrieb, abhängig von Phasen ID: Subindex 4, Bit 76)	uint8
8	0	Bit 5 - 7: Reserviert Bit 40: Gerätetyp 0: OMUS®C14 Connect Plus 2,6 A 1: OMUS®C14 Connect Plus 6,6 A	Enum

19.2 Zyklische Ausgangsdaten (PDOUT)

Zyklische Eingangsdaten (PDIN) wird die Art von Daten genannt, welche vom IO-Link-Master an den OMUS®C14 geschickt werden und Ansteuersignale beinhalten.

Subindex	Bit offset	Name	Datentyp
1	0	Bit 7: Ansteuerung Phase L3	Bool
		(Konfiguration für einphasigen	
		Betrieb vorausgesetzt)	
		Bit 6: Ansteuerung Phase L2	Bool
		(Konfiguration für einphasigen	
		Betrieb vorausgesetzt)	
		Bit 5: Externer Stopp	Bool
		(1: aktiv, 0: inaktiv)	
		Bit 4: Ansteuerung Phase L1	Bool
		(Konfiguration für einphasigen	
		Betrieb notwendig)	
		Bit 3: Reserviert	
		Bit 2: Fehlerquittierung	Bool
		(1: Fehler quittieren, 0: kein Effekt)	
		Bit 1: Reserviert	
		Bit 0: Ansteuerung Last	Bool
		(1: aktiv, 0: inaktiv)	

HINWEIS: Das Signal "Externer Stopp" lässt die Last sofort stoppen, ignoriert jedoch **nicht** im Anschluss detektierte Ansteuerwünsche.

!

19.3 Azyklische Daten (ISDU-Parameter) – IO-Link-Standard

Die unten aufgeführten Parameter sind durch die IO-Link Spezifikation vorgegeben und im Gerät umgesetzt:

ISDU-				
Index	Parameter Name	Länge	Zugriff	Wert / Standardwert
16	Name des Herstellers	Max. 64 Bytes	Lesend	Wöhner GmbH & Co. KG
17	Hersteller Beschreibung	Max. 64 Bytes	Lesend	www.woehner.de
18	Name des Produktes	Max. 64 Bytes	Lesend	OMUS®C14 Connect Plus 2,6 A *
19	Kennung des Produktes	Max. 64 Bytes	Lesend	36179*
20	Beschreibung des Produktes	Max. 64 Bytes	Lesend	OMUS®C14 Connect Plus 2,6 A IO-Link*
21	Seriennummer	Max. 16 Bytes	Lesend	00001*
22	Hardware Revision	Max. 64 Bytes	Lesend	01:06:07* (CB:PB:DB)
23	Firmware Version	Max. 64 Bytes	Lesend	V0.6.0.3*
24	Application Specific Tag	32 Bytes	Lesend/ Schreibend	"***" (String)
25	Function Tag	32 Bytes	Lesend/ Schreibend	"***" (String)
26	Location Tag	32 Bytes	Lesend/ Schreibend	"***" (String)
32	Fehlerzähler IO-Link	2 Bytes	Lesend	-
36	Gerätestatus IO-Link	1 Byte	Lesend	-
37	Detaillierter Gerätestatus IO-Link	21 Bytes	Lesend	-
40	Zyklische Eingangsdaten	10 Bytes	Lesend	-
41	Zyklische Ausgangsdaten	1 Byte	Lesend	-

* Beispiel

19.4 Azyklische Daten (ISDU-Parameter) – Gerätespezifisch

Die unten aufgeführten Parameter sind gerätespezifisch und dienen zur Konfiguration und detaillierteren Ausgabe der Messwerte des Gerätes:

19.4.1 Gerät – Konfiguration

ISDU- Index	Name	Daten- typ	Länge (Bytes)	Beschreibung	Zugriff
256	Betriebsmodus	uint8	1	0: Dreiphasige Konfiguration 1: Einphasige Konfiguration	Lesend Schreibend
302	Automatische Fehlerquittierung bei Überlast	uint8	1	0: Inaktiv 1: Aktiv Automatische Fehlerquittierung, wenn Thermische Kapazität	Lesend Schreibend
				unter 75% fällt	

19.4.2 Gerät – Messdaten

ISDU- Index	Name	Daten- typ	Länge (Bytes)	Beschreibung	Zugriff
68	Laststrom L1 (RMS)	uint16	2	Einheit in 100mA	Lesend
69	Laststrom L2 (RMS)	uint16	2	Einheit in 100mA	Lesend
70	Laststrom L3 (RMS)	uint16	2	Einheit in 100mA	Lesend
71	Eingangsspannung L1 (RMS)	uint16	2	Einheit in 10mV	Lesend
72	Eingangsspannung L2 (RMS)	uint16	2	Einheit in 10mV	Lesend
73	Eingangsspannung L3 (RMS)	uint16	2	Einheit in 10mV	Lesend

19.4.3 Dreiphasiger Betrieb – Konfiguration

ISDU- Index	Name	Daten- typ	Länge (Bytes)	Beschreibung	Zugriff
66	Nennstrom	uint8	1	Einheit in 100mA Maximalwert: 26: 2,6A Gerät 66: 6,6A Gerät	Lesend Schreibend
67	Auslöseklasse	uint8	1	8: Resistiv	Lesend Schreibend
263	Unterstromdetektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
267	Unterstromdetektion – Schwellwert	uint8	1	Einheit in 100mA Maximalwert: Eingestellter Nennstrom	Lesend Schreibend
271	Unterstromdetektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend

275	Unterspannungs- detektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
279	Unterspannungs- detektion – Schwellwert	uint16	2	Einheit in 10mV Maximalwert: 600V	Lesend Schreibend
283	Unterspannungs- detektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend
287	Überspannungs- detektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
291	Überspannungs- detektion – Schwellwert	uint16	2	Einheit in 10mV Maximalwert: 600V	Lesend Schreibend
295	Überspannungs- detektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend
299	Lastasymmetrie- detektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
300	Lastasymmetrie- detektion – Schwellwert	uint8	1	Einheit in 100mA Maximalwert: Eingestellter Nennstrom	Lesend Schreibend
301	Lastasymmetrie- detektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend

19.4.4 Einphasiger Betrieb – Konfiguration L1

ISDU- Index	Name	Daten-	Länge (Bytes)	Beschreibung	Zuariff
257	Nennstrom	uint8	1	Einheit in 100mA Maximalwert: 26: 2,6A Gerät 66: 6,6A Gerät	Lesend Schreibend
260	Auslöseklasse	uint8	1	8: Resistiv	Lesend Schreibend
264	Unterstromdetektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
268	Unterstromdetektion – Schwellwert	uint8	1	Einheit in 100mA Maximalwert: Eingestellter Nennstrom	Lesend Schreibend
272	Unterstromdetektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend
276	Unterspannungs- detektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend

280	Unterspannungs- detektion – Schwellwert	uint16	2	Einheit in 10mV Maximalwert: 600V	Lesend Schreibend
284	Unterspannungs- detektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend
288	Überspannungs- detektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
292	Überspannungs- detektion – Schwellwert	uint16	2	Einheit in 10mV Maximalwert: 600V	Lesend Schreibend
296	Überspannungs- detektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend

19.4.5 Einphasiger Betrieb – Konfiguration L2

ISDU-	Namo	Daten-	Länge	Pacabraibung	Zuariff
258	Nennstrom	uint8		Einheit in 100mA	Lesend
				Maximalwert: 26: 2,6A Gerät 66: 6,6A Gerät	Schreibend
261	Auslöseklasse	uint8	1	8: Resistiv	Lesend Schreibend
265	Unterstromdetektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
269	Unterstromdetektion – Schwellwert	uint8	1	Einheit in 100mA Maximalwert: Eingestellter Nennstrom	Lesend Schreibend
273	Unterstromdetektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend
277	Unterspannungs- detektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
281	Unterspannungs- detektion – Schwellwert	uint16	2	Einheit in 10mV Maximalwert: 600V	Lesend Schreibend
285	Unterspannungs- detektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend
289	Überspannungs- detektion – Aktivierung	uint8	1	0: Inaktiv 1: Aktiv	Lesend Schreibend
293	Überspannungs- detektion – Schwellwert	uint16	2	Einheit in 10mV Maximalwert: 600V	Lesend Schreibend
297	Überspannungs- detektion – Fehlerart	uint8	1	0: Warnung 1: Störung	Lesend Schreibend

ISDU-		Daten-	Länge		
Index	Name	typ	(Bytes)	Beschreibung	Zugriff
259	Nennstrom	uint8	1	Einheit in 100mA	Lesend
				Maximalwert:	Schreibend
				26: 2,6A Gerat	
				66: 6,6A Gerat	
262	Auslöseklasse	uint8	1	8: Resistiv	Lesend Schreibend
266	Unterstromdetektion	uint8	1	0: Inaktiv	Lesend
	– Aktivierung			1: Aktiv	Schreibend
270	Unterstromdetektion	uint8	1	Einheit in 100mA	Lesend
				Maximalwert:	Ochiciberia
				Fingestellter	
				Nennstrom	
274	Unterstromdetektion	uint8	1	0: Warnung	Lesend
	– Fehlerart	unito		1. Störung	Schreibend
278	Unterspannungs-	uint8	1	0: Inaktiv	Lesend
	detektion –			1: Aktiv	Schreibend
	Aktivieruna				
282	Unterspannungs-	uint16	2	Einheit in 10mV	Lesend
	detektion –				Schreibend
	Schwellwert			Maximalwert:	
				600V	
286	Unterspannungs-	uint8	1	0: Warnung	Lesend
	detektion – Fehlerart			1: Störung	Schreibend
290	Überspannungs-	uint8	1	0: Inaktiv	Lesend
	detektion –			1: Aktiv	Schreibend
	Aktivierung				
294	Überspannungs-	uint16	2	Einheit in 10mV	Lesend
	detektion –				Schreibend
	Schwellwert			Maximalwert:	
				600V	
298	Uberspannungs-	uint8	1	0: Warnung	Lesend
	detektion – Fehlerart			1: Störung	Schreibend

19.5 System Kommandos – IO-Link-Standard

Die unten aufgeführten Kommandos sind durch die IO-Link Spezifikation vorgegeben und im Gerät umgesetzt:

Command	Name
128	Gerätereset
129	Reset der Anwendung
130	Rücksetzen auf Werkseinstellungen

20 Technische Daten

Geräteversorgung	
Bemessungssteuerstromkreisspeisespannung Us	24 V DC
Steuerspeisespannungsbereich	20,4 V DC - 26,4 V DC
Bemessungssteuerspeisestrom Is	200 mA
Schutzbeschaltung	Überspannungsschutz
	Verpolschutz

Digitaler Eingang gemäß IEC 60947-1 Anhang S			
Bemessungsbetätigungsspannung Uc	24 V DC		
Bemessungsbetätigungsstrom Ic	7 mA		
Schaltschwelle	< 6 V ("0"-Signal)		
	>12 V ("1"-Signal)		
Einschaltzeit typisch	< 20 ms		
Ausschaltzeit typisch	< 20 ms		
Maximale Ansteuerfrequenz	20 Hz		

AC-Ausgang	
Bemessungsbetriebsspannung U _e	130 V AC - 500 V AC
Bemessungsisolationsspannung U _i	500 V AC
Laststrombereich siehe Kapitel 18 Derating	0,1 - 2,6 A / 0,1 A - 6,6 A
Maximaler Anlaufstrom	35A (2,6 A) / 56A (6,6 A)
Bedingter Bemessungskurzschlussstrom I _q	100 kA (Zuordnungsart 2, ohne
	Vorsicherung)
SCCR	100 kA
Auslösekennlinie	Resistiv
Auslösestrom	110% Nennstrom
Abkühlzeit	Dynamisch, siehe Abkühlzeit
	(Kapitel 16)
100% auf 75% (Resistiv, Nennstrom 1 A)	3,46 s
100% auf 75% (Resistiv, Nennstrom 3 A)	3,46 s
Thermische Kapazität im Nennbetrieb	75%
Bemessungsbetriebsstrom Ie AC-53a	2,6 A / 6,6 A
Bemessungsbetriebsstrom Ie AC-51	2,6 A / 6,6 A
Leckstrom	0,5 mA
Schutzbeschaltung	Überspannungsschutz Varistor

Status- und Diagnoseanzeigen LED Haupttaster			
Betriebsbereit	weiß		
Ansteuerung	grün		
Warnung	gelb		
Störung	rot		

Senkrecht (Tragschiene
waagrecht, Lastabgang unten)
Anreihbar, Abstand siehe Derating
(Kapitel 18)
100 % ED
IP20
6 W / 11 W (2,6 A), 21 W (6,6 A)
22,5 mm / 160 mm / 132,5 mm
NO: 277 Vac, 1 A
30 Vdc, 2 A (4 A bis 40 °C)
CO: 277 Vac, 1 A
30 Vdc, 2 A (4 A bis 40 °C)

Anschlussdaten	
Benennung Anschluss	Steuerkreis
Anschlussart	Push-in-Anschluss
Leiterquerschnitt feindrähtig ohne Aderendhülse	0,2 - 1,5 mm²
Leiterquerschnitt feindrähtig mit Aderendhülse	0,25 - 1,5 mm²
Leiterquerschnitt feindrähtig mit isolierter	0,14 - 0,75 mm²
Aderendhülse	
Leiterquerschnitt starr	0,2 - 1,5 mm²
Abisolierlänge	10 mm
Benennung Anschluss	Lastkreis
Anschlussart	Schraubanschluss
Anzugsdrehmoment	0,5 - 0,6 Nm / 5 lb _f -in 7 lb _f -in.
Leiterquerschnitt feindrähtig ohne Aderendhülse	0,2 - 2,5 mm² (f)/AWG 24 - 12 (str)
Leiterquerschnitt feindrähtig mit Aderendhülse	0,2 - 2,5 mm² (f+AE)
Leiterquerschnitt feindrähtig mit isolierter	0,2 - 2,5 mm² (f+AE)
Aderendhülse	
Leiterquerschnitt starr	0,2 - 2,5 mm² (re)
Abisolierlänge	8 mm

Umgebungsbedingungen	
Umgebungstemperatur (Betrieb)	-5 °C - +55 °C (Derating beachten)
Relative Luftfeuchtigkeit r.F.	5 - 95 %, nicht kondensierend
Umgebungstemperatur (Lagerung/Transport)	-40 °C - +70 °C

Normen / Bestimmungen	
Normen	IEC / EN 60947-4-2
	IEC / EN 60947-1
UL-Zulassung	E510845
Zugelassene Adapter	MCC-60-2, MCC-30-2, MCC-PA-2

Isolationseigenschaften	
Bemessungsisolationsspannung	500 V
Überspannungskategorie (inkl. Anforderungen an sichere Trennung)	
bei größter Bemessungsbetriebsspannung gegen Erde ≤ 300 V	1 - 111
bei größter Bemessungsbetriebsspannung gegen Erde ≤ 500 V	-
Überspannungskategorie (ohne Anforderungen an sichere Trennung)	
bei größter Bemessungsbetriebsspannung gegen Erde ≤ 300 V	I - IV
bei größter Bemessungsbetriebsspannung gegen Erde ≤ 500 V	-
Verschmutzungsgrad	2

-Diese Seite ist absichtlich leer gelassen-

-This page is intentionally left blank-
1 Table of contents

Table of contents					
Description39					
Applications					
3.1 Allowed applications					
4 Ordering Data	41				
5 Safety regulations / installation notes	43				
5.1 Content EU-Declaration of Conformity					
5.2 Area of application					
5.3 UL notes					
6 Operating and indication	45				
7 Connections	46				
7.1 Main connection and line protection					
7.2 Mounting					
7.3 Standard connection					
7.3.1 3-Phase Configuration					
7.3.2 1-Phase Configuration					
7.4 IO-Link connection					
7.5 Connecting the cables					
7.5.1 Screw connection					
7.5.2 Push-in connection					
8 Control of OMUS®C14	50				
9 EPLAN symbol	50				
10 ServiceTool	51				
11 User interface					
12 Warnings and Errors	54				
12.1 Warning codes					
12.2 Error codes					
12.2 Error Acknowledgement					
13 Reset to Factory Settings					
14 Tripping curve (cold state)	56				

15	Tripping curve (thermal equilibrium)57			
16	Over	rloac	l cool down time	58
17	Pern	nitte	d overcurrent factors	59
18	Dera	ating		59
19	IO-Li	ink iı	nterface	60
1	9.1	Cyclic	process data input (PDIN)	60
1	9.2	Cyclic	process data output (PDOUT)	62
1	9.3	Acycl	ic process data (ISDU-Parameter) – IO-Link-Standard	63
1	9.4	Acycl	ic process data (ISDU-Parameter) – Device specific	63
	19.4.1	1	Device – Configuration	63
	19.4.2	2	Device – Measurement	64
	19.4.3	3	3-Phase Operation – Configuration	64
	19.4.4	1	Single-Phase Operation – Configuration L1	65
	19.4.5	5	Single-Phase Operation – Configuration L2	66
	19.4.6	5	Single-Phase Operation – Configuration L3	67
1	9.5	Syste	m Commands – IO-Link-Standard	67
20	Tech	nnica	l Data	68

hat form hat gelös

2 Description

The electronic switch OMUS[®]C14 is a compact switching device with 22,5 mm width for 1-phase and 3-phase loads. The electronic switch includes the following functions:

- Overload Protection
- Switching of resistive loads
- High switching frequency up to 20Hz
- C14 Electronic short circuit protection without fuses
- Galvanic disconnect
- Measurement of Operation Current, Voltage and Power Management
- IO-Link Communication Protocol

i

Please be sure to always use the current document revision. All documents can be found in the download section of the Wöhner homepage, <u>https://www.woehner.com</u>

This document is valid for all products listed in section 4 "Ordering Data,"

3 Applications

3.1 Allowed applications

Operation Mode: Symmetric Resistive Load

Figure 1 Possible application 3-phase without neutral line

• The electronic switch is suitable for operation with resistive load connections according to the above example.

NOTE: In all cases, a symmetrical three-phase supply must be used on grid side, a 1-phase supply is not supported and leads to error messages.

OMUS[®]C14 Operating Instructions

- In the case of 1-phase loads without neutral line (Fig. 2), it must be ensured that all phases involved in the current flow are controlled in order to avoid unintentional faults. Furthermore, the return line can be chosen arbitrarily, it is not mandatory to use phase L2.
- The return line can also contain an impedance, the equivalent circuit then results as shown in Fig. 1.

Figure 2 Possible application 1-phase without neutral line

Figure 3 Examples for 1-phase loads with neutral line

- If a neutral line is available, the load can be switched in 3-phase or 1-phase operation.
- Configuration/parameterization of 1-phase operation is performed exclusively via IO-Link or ServiceTool. Parameterization via the display is currently not possible.

4 Ordering Data

Product			Weight	
designation	Description	PU	kg/100	Part No.
OMUS®C14	Electronic switch with IO-Link;	1	-	36 168
Connect	Functions: Switch Resistive Loads,			
2,6 A	Overload Protection, Short Circuit			
Panel	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link;	1	-	36 169
Connect	Functions: Switch Resistive Loads,			
2,6 A	Overload Protection, Short Circuit			
30Compact	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link;	1	-	36 170
Connect	Functions: Switch Resistive Loads,			
2,6 A	Overload Protection, Short Circuit			
60Classic	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link;	1	-	36 171
Connect	Functions: Switch Resistive Loads,			
2,6 A	Overload Protection, Short Circuit			
CrossBoard	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link;		-	36 172
Connect	Functions: Switch Resistive Loads,			
6,6 A	Overload Protection, Short Circuit			
Panel	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link;	1	-	36 173
Connect	Functions: Switch Resistive Loads,			
6,6 A	Overload Protection, Short Circuit			
30Compact	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link;	1	-	36 174
Connect	Functions: Switch Resistive Loads,			
6,6 A	Overload Protection, Short Circuit			
60Classic	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link;	1	-	36 175
Connect	Functions: Switch Resistive Loads,			
6,6 A	Overload Protection, Short Circuit			
CrossBoard	Protection; High Switching Frequency			

Product			Weight	Part No.
designation	Description	PU	kg/100	
OMUS®C14	Electronic switch with IO-Link and	1	-	36 176
Connect Plus	display;			
2,6 A	Functions: Switch Resistive Loads,			
Panel	Overload Protection, Short Circuit			
	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link and	1	-	36 177
Connect Plus	display;			
2,6 A	Functions: Switch Resistive Loads,			
30Compact	Overload Protection, Short Circuit			
	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link and	1	-	36 178
Connect Plus	display;			
2,6 A	Functions: Switch Resistive Loads,			
60Classic	Overload Protection, Short Circuit			
	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link and	1	-	36 179
Connect Plus	display;			
2,6 A	Functions: Switch Resistive Loads,			
CrossBoard	Overload Protection, Short Circuit			
	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link and	1	-	36 180
Connect Plus	display;			
6,6 A	Functions: Switch Resistive Loads,			
Panel Overload Protection, Short Circuit				
	Protection; High Switching Frequency			
OMUS®C14	Electronic switch with IO-Link and	1	-	36 181
Connect Plus	display;			
6,6 A	Functions: Switch Resistive Loads,			
30Compact	Overload Protection, Short Circuit			
011100044	Protection; High Switching Frequency			00.400
OWUS®C14	Electronic switch with IO-Link and	1	-	36 182
Connect Plus	aispiay;			
6,6 A	Functions: Switch Resistive Loads,			
OUCIASSIC	Diversional Protection, Short Circuit			
OMUSOCIA	Floctron; High Switching Frequency	4		20.400
	Liectronic switch with IO-Link and	1	-	30 183
	uispidy;			
0,0 A Cross Desard	Functions: Switch Resistive Loads,			
CrossBoard	Overload Protection, Short Circuit			
	Protection; High Switching Frequency			

	Weight			
Accessories	Description	PU kg/100 Par		Part No.
EQUES®Panel	Panel Adapter	1	7,2	36 112
EQUES®Compact 30Compact Busbar Adapter		1	7,2	36 113
EQUES®Classic	60Classic Busbar Adapter	1	7,2	36 114

5 Safety regulations / installation notes

5.1 Content EU-Declaration of Conformity

Manufacturer: Wöhner GmbH & Co. KG, Mönchrödener Straße 10, 96472 Rödental, Germany

The valid EU-Declaration of Conformity can be found in the download section linked to the product code on the Wöhner Homepage, <u>https://www.woehner.com</u>

Safety regulations and installation notes

- When working on the device, observe the national rules and regulations for electrical safety
- Not observing these safety regulations may result in death, serious injury or equipment damage.
- During operation, voltage is present on the device.
- This device may only be started up, assembled, modified or retrofitted by an authorized electrician. Operation should only be carried out in a suitable electrical cabinet.
- Before working on the device, disconnect the power.
- For safety-related applications, secure the device using access protection.
- Safety data can be found in this documentation and in the certificates.
- Install the device in an appropriate cabinet with a suitable degree of protection.
- Do not subject the device to mechanical and/or thermal loads that exceed the specified values according to IEC/EN 60529 for protection against mechanical or electrical damage.
- Install the device as specified in the installation instructions. Access to circuits inside the device is prohibited.
- Do not attempt to repair the device. Repairs may only be carried out by the manufacturer. The manufacturer is not liable for damage as a result of non-compliance.
- Only use power supply units with safe isolation and SELV/PELV in accordance with EN 50178/VDE 0160 (SELV/PELV). This prevents short circuits between the primary and secondary circuits.
- The minimum allowed Load Current: 2,6 A-device: ≥ 100 mA; 6,6 A-device: ≥ 100 mA

5.2 Area of application

• This is a product for environment A (industrial). The device can cause unwanted radio interference if used in Class B environments (household). If the product is used in Class B environments, additional measures may be required.

5.3 UL notes

ļ

WARNING: Risk of electrical shock and fire!

The opening of the branch-circuit protective device may be an indication that a fault current has occurred.

To reduce the risk of fire or electric shock, current-carrying parts and the other components of the controller should be examined and replaced if damaged.

Failure to follow instructions can result in death, serious injury, or equipment damage.

NOTE: The device is designed for use with a "low voltage, limited energy, isolated power supply". Use copper cables approved to at least 75 °C.

SCCR

Suitable for use on a circuit with a maximum of 100 kA rms symmetrical amperes and ≤480 V. FLA 2,6 A (480 V AC), 6,6 A (480 V AC).

Figure 5 Operating and indication for OMUS[®]C14 Connect Plus

7 Connections

!

WARNING: Danger to life by electric shock! Never carry out work when voltage is present.

7.1 Main connection and line protection

- When making the mandatory 3-phase connection, it is essential to observe the terminal identification for correct phase sequence.
- The control supply voltage and control voltage inputs must be operated with power supply modules according to IEC 61131-2 (max. 5 % residual ripple).
- In order to avoid inductive or capacitive coupling of noise emissions on long control wires, the use of shielded conductors is recommended.

7.2 Mounting

• Snap the electronic switch onto the respective busbar system 30Compact, 60Classic or directly onto the CrossBoard®.

Figure 6

Mounting onto adapters and CrossBoard

- 1 Busbar adapter 30Compact
- 2 Busbar adapter 60Classic
- 3 DIN rail adapter
- 4 Electronical switch
- 5 CrossBoard[®]

7.3 Standard connection

- The standard connection is made using a 16-pin connector. Connect the cables to the control plug of the electronic switch.
- To put the load into operation, you <u>have to</u> enable the device via the enable input by supplying 24V between EN+ and EN-.
- As soon as a valid signal is present at the enable input (at terminals EN + and EN-), the device will accept control commands.
- It is possible to assign a persistent valid signal at the enable inputs through connecting terminals (6) and (5) as well as terminals (8) and (7).

7.3.1 3-Phase Configuration

2	Control Load	1	24 V / L+
4	Not connected	3	GND / L-
6	24 V / L+	5	Enable +
8	GND / L-	7	Enable -
10	Reset	9	Not connected
12	GND for inputs	11	C/Q (IO-Link)
14	98 (Error NO)	13	96 (Error NC)
16	12 (Warning NC)	15	95/11 (Common)

Figure 7 Pin assignment – Control Plug, 3~-Configuration

- The control inputs **Control Load** and **Reset** are galvanically isolated from the 24V control circuit.
- Common reference for those control inputs is terminal GND for inputs.
- The enable terminals **Enable +** and **Enable -** are galvanically isolated from the 24V control circuit and from the other control inputs.
- Since a base insulation exists, it is allowed to wire the terminals **GND for inputs** and **GND** together.

WARNING:

Do not use control voltages > 24V. Control voltages >24V will damage the device.

7.3.2 1-Phase Configuration

2	Control Phase L1	1	24 V / L+
4	Control Phase L2	3	GND / L-
6	24 V / L+	5	Enable +
8	GND / L-	7	Enable -
10	Control Phase L3	9	Not connected
12	GND for inputs	11	C/Q (IO-Link)
14	98 (Error NO)	13	96 (Error NC)
16	12 (Warning NC)	15	95/11 (Common)

Figure 8 Pin assignment – Control Plug, 1~-Configuration

- The control inputs **Control L1, L2, L3** are galvanically isolated from the 24V control circuit.
- Common reference for those control inputs is terminal GND for inputs.
- The enable terminals **Enable +** and **Enable -** are galvanically isolated from the 24V control circuit and from the other control inputs.
- Since a base insulation exists, it is allowed to wire the terminals **GND for inputs** and **GND** together.

WARNING: Do not use control voltages > 24V. Control voltages >24V will damage the device.

CAUTION: The configuration/parameterization of 1-phase operation is carried out exclusively via IO-Link or ServiceTool. Parameterization via the display is currently not possible.

7.4 IO-Link connection

- The IO-Link connection is made using the same 16-pin connector as the standard connection.
- Only terminals **1**, **3**, **5 8** und **11** are necessary for correct device operation via IO-Link. The use of all remaining terminals is optional.
- To put the load into operation, you <u>have to</u> enable the device via the enable input. (see 7.3 Standard connection)

!

!

7.5 Connecting the cables

7.5.1 Screw connection

Figure 9 Screw connection

- Strip 8 mm of insulation from the individual wires.
- Plug the conductor into the corresponding terminal block.
- Tighten the screw in the opening above the connection terminal with a screwdriver.

7.5.2 Push-in connection

Figure 10 Push-in connection

- Rigid or flexible conductors with ferrrules, can be inserted directly into the terminal. (A).
- Flexible conductors without ferrules can be inserted safely by opening the terminal spring with the pressure release. (**B**).
- To remove the conductor, the terminal spring must be opened using the pressure release (**B**).
- •____If necessary, use a fixture to fix the plug during connection.

8 Control of OMUS®C14

- The device can be controlled via the control inputs (**Pin 2, 4 and 10**) as well as via the IO-Link interface (see 19).
- The device is edge sensitive at the control inputs. This means that a change of level, e.g. from low to high at one of the control inputs, causes the OMUS[®]C14 to react. Likewise, with IO-Link, a change of the control bit from 0 to 1 is detected as a change and the control request is performed accordingly.
- The OMUS[®]C14 always reacts to the last detected edge change and thus has a time sensitivity with regard to the inputs. It is irrelevant whether the control request is detected via a control input or via IO-Link.

9 EPLAN symbol

Figure 11 EPLAN symbol OMUS[®]C14 – 3~ Configuration

Figure 12 EPLAN-Symbol OMUS[®]C14 – 1~ Configuration

• The package with the associated EPLAN symbols can be downloaded from the download section of the OMUS[®]C14 product website (https://pim.woehner.de/).

10 ServiceTool

- The OMUS®C14 can be configured using a PC via the ServiceTool. The connection between the device and PC is established via a USB-C cable.
- The current version of the ServiceTool can be downloaded at: <u>https://www.motus-c14.de/en/servicetool</u>
- The ServiceTool has a user management where different roles are available:
 - \circ "Costumer" does not require a password and only has read permissions.
 - "Supervisor" has a predefined password: "C14Supervisor" and has write permissions for device configuration.
- For further introduction and support, a video tutorial has been created. This can be played via the following QR code:

(Link: https://youtu.be/6Zy-It5U4IA)

11 User interface

- Navigate through the main menu screens by pressing the main button (1)
- The main menu screens are: home screen, settings menu and three measurement screens displaying current, voltage and power.
- Scroll through the settings menu by pressing the arrow buttons (2 and 3). To select/confirm a setting you want to change press the main button (1).

A video tutorial can be played using the QR code below to help you navigate the menu of the OMUS[®]C14:

(Link: https://youtu.be/59oPIZ2x6xc)

Figure 14 User interaction - OMUS[®]C14 Connect+, 3~ Configuration

Figure 16 Screen overview - OMUS[®]C14 Connect+

- When the maintenance mode is activated, the unit no longer accepts control signals. Entering maintenance mode is only possible while load is not turned on!
- When working on the load cables or the load itself, the load plug must also be disconnected!

12 Warnings and Errors

12.1 Warning codes

W1402	Load undercurrent (adjustable)
W1403	Main overvoltage (adjustable)
W1404	Main undervoltage (adjustable)
W1405	Device overtemperature (>60 °C)
W1406	Thermal overload (depending on selected nominal current)
W1407	Load asymmetry (adjustable)
W1408	Phase loss - Load
W1409	Supply loss - Main
W1413	Undervoltage (control circuit supply; <20,0 Vdc)
W1414	Overvoltage (control circuit supply; >28,8 Vdc)
W1415	Missing device enable (at enable terminals)
W1416	Maximum control frequency exceeded

12.2 Error codes

E1402	Load undercurrent (adjustable)
E1403	Main overvoltage (adjustable)
E1404	Main undervoltage (adjustable)
E1405	Device overtemperature (>80 °C)
E1406	Thermal overload (depending on selected nominal current)
E1407	Load asymmetry (adjustable)
E1408	Phase loss - Load
E1409	Supply loss - Main
E1410	Short circuit - Load
E1411	Device error
E1412	Internal communication error
E1413	Undervoltage (control circuit supply; <17,0 Vdc)
E1414	Overvoltage (control circuit supply; >30,0 Vdc)
E1416	Maximum control frequency exceeded
E1417	IO-Link communication loss

12.3 Error Acknowledgement

- i
- In case that a warning occurs, the connected load will continue to operate normally.
- Warnings cannot be acknowledged.
- As soon as the cause of a warning disappeared the warning will also disappear without user interaction.

!	IMPORTANT:	Errors are leading to a load switch-off.
		0

IMPORTANT: The root cause of an error must be analyzed and fixed before acknowledging the error.

 An error can be acknowledged by pressing the main button for 2s, via a Analog Reset Signal or via IO-Link.

13 Reset to Factory Settings

 It is possible to reset the device setting to factory defaults using the ServiceTool or the Display.

14 Tripping curve (cold state)

The tripping characteristic represent an overview of the times after which the OMUS[®]C14 switches off due to an overload that has occurred. In the cold state, a start value equal to 0 is assumed for the thermal capacity.

Figure 17 Tripping time (cold state)

Table 1: Tripping time [s] (cold state)

/ _N	TC
	RESISTIVE
1,2	10
1,5	3.56
2	1.62
3	0.66
4	0.38
5	0.24
6	0.18
7	0.14
8	0.12
9	0.1
10	0.08
11	0.08
12	0.06
13	0.06
14	0.06
15	0.06

15 Tripping curve (thermal equilibrium)

The tripping characteristic represent an overview of the times after which the OMUS®C14 switches off due to an overload that has occurred. In the warm state, it is assumed that the device previously ran in nominal operation for a longer period of time (>2h).

Figure 18 Tripping time (thermal equilibrium)

/ _N	ТС
	RESISTIVE
1,2	5.26
1,5	1.2
2	0.46
3	0.18
4	0.1
5	0.06
6	0.04
7	0.04
8	0.04
9	0.02
10	0.02
11	0.02
12	0.02
13	0.02
14	0.02
15	0.02

16 Overload cool down time

The cooling time represent an overview of the times after which the thermal capacity of the OMUS®C14 reaches a certain value when the device has been switched off by overload. The thermal capacity represents a modelling of the thermal load of the load.

The "overload" error can only be acknowledged when the value of the thermal capacity has fallen below 75 %.

Figure 19 Cool down time

Table 3: Cool down time [s]

Tripping Class / Thermal Capacity	TC RESISTIVE
100 – 75 %	3.46
100 – 50 %	8.3
100 – 25 %	16.6
100 – 0 %	100

17 Permitted overcurrent factors

- The starting current of the load must not exceed 56 A (OMUS®C14-6,6A) resp. 35 A (OMUS®C14-2,6A)
- Higher currents can cause the internal protective circuits to trip

18 Derating

2,6 A-devices: device vertical, load output below

Ambient temperature [°C]	35	55	70
Max. load current [A], with 22,5mm spacing between devices	2,6	2,6	-
Max. load current [A], without spacing	2,6	2,4	-

6,6 A-devices: device vertical, load output below (dynamic fan control)

Ambient temperature [°C]	35	55	70
Max. load current [A], with 22,5mm spacing between devices	6,6	6,6	-
Max. load current [A], without spacing	5,3	5,3	-

19 IO-Link interface

The IO-Link interface consists of cyclic and acyclic process data, which are used to configure and control the OMUS®C14. The cyclic data is used to control the OMUS®C14 and to read back internal device information. These are exchanged between the IO-Link master and the OMUS®C14 within a period of approx. 2ms. A distinction is made between cyclical input data (Process Data In, PDIN), which are sent from the OMUS®C14 to the IO-Link master and contain device information, and cyclical output data (Process Data Out, PDOUT), which can be used to control the OMUS®C14.

The acyclic process data are used to configure the OMUS®C14 and to transmit additional information that does not have to be transmitted in real time.

A list of the cyclical and acyclical process data provided is shown in the following subchapters.

A video tutorial based on a Siemens TIA project was created for integrating the OMUS®C14 into a plant control system and can be played using the following QR code:

(Link: https://youtu.be/RS1Jyr1h42c)

19.1 Cyclic process data input (PDIN)

Cylic process data input (PDIN) is sent from the OMUS®C14 to the IO-Link-Master indicating device status & informations.

Subindex	Bit offset	Name	Datatype
1	72	Bit 7: Phase L3 active	Bool
		(1: active, 0: inactive)	
		Bit 6: Phase L2 active	Bool
		(1: active, 0: inactive)	
		Bit 5: Phase L1 active	Bool
		(1: active, 0: inactive)	
		Bit 4: External Enable Signal	Bool
		(1: Enable received,	
		0: Enable missing)	
		Bit 3: Reserved	Bool
		Bit 2: Load Control active	Bool
		(1: active, 0: inactive)	
		Bit 1: Warning detected	Bool
		(1: Warning, 0 Device OK)	
		Bit 0: Error detected	Bool
		(1: Error, 0: Device OK)	

	1	1	1
2	64	Bit 70: Error type 0: Device OK 1: Short circuit 2: Overload 3: Load asymmetry 4: Phase loss – Load 5: Undercurrent - Load 6: Supply loss 7: Undervoltage Supply 8: Overvoltage Supply 9: Overtemperature 10: Undervoltage Aux 11: Overvoltage Aux 12: Device error 13: Communication error 14: Missing device enable (Phase specific, depending on Phase ID: Subindex 4, Bit 76)	Enum
3	56	Nominal current [Einheit in 100mA] (Phase specific when configured for 1~ operation, depending on Phase ID: Subindex 4, Bit 76)	uint8
4	48	Bit 76: Phase ID 0: Phase L1 1: Phase L2 2: Phase L3 Bit 4 - 5: Reserved Bit 30: Trip class 8: Class Resistive (Phase specific when configured for 1~ operation, depending on Phase ID: Subindex 4, Bit 76)	Enum
5	32	Load current [Unit in 10mA] (Phase specific, depending on Phase ID: Subindex 4, Bit 76)	uint16
6	16	Supply voltage [Unit in 10mV] Corresponds to Chained Voltage: Phase ID: L1; Chained Voltage L1L2 Phase ID: L2; Chained Voltage L2L3 Phase ID: L3; Chained Voltage L3L1 (Phase specific, depending on Phase ID: Subindex 4, Bit 76)	uint16
7	8	Thermal load [Unit in %] (Phase specific when configured for 1~ operation, depending on Phase ID: Subindex 4, Bit 76)	uint8
8	0	Bit 5 - 7: Reserved Bit 40: Device type 0: OMUS®C14 Connect Plus 2,6 A 1: OMUS®C14 Connect Plus 6,6 A	Enum

19.2 Cyclic process data output (PDOUT)

Cyclic process data output is sent from the IO-Link-Master to the OMUS®C14 for device control.

Subindex	Bit offset	Name	Datatype
1	0	Bit 7: Control Phase L3	Bool
		(Configuration for 1~ operation	
		Bit 6: Control Phase I 2	Bool
		(Configuration for 1~ operation	2001
		required)	
		Bit 5: External stop signal	Bool
		(1: Stop device, 0: no effect)	
		Bit 4: Control Phase L1	Bool
		(Configuration for 1~ operation required)	
		Bit 3: Reserved	
		Bit 2: Error acknowledgement	Bool
		(1: Acknowledge Error, 0: no effect)	
		Bit 1: Reserved	
		Bit 0: Load control	Bool
		(1: control active, 0: inactive)	

!

NOTE:

The "External stop" signal causes the load to stop immediately but does not ignore control requests that are detected afterwards.

19.3 Acyclic process data (ISDU-Parameter) – IO-Link-Standard

The parameters listed below are specified by the IO-Link specification and implemented in the device:

ISDU-				
Index	Parameter Name	Length	Access	Value / Default Value
16	Vendor Name	max 64 Bytes	RO	Wöhner GmbH & Co. KG
17	Vendor Text	max 64 Bytes	RO	www.woehner.de
18	Product Name	max 64 Bytes	RO	OMUS®C14 Connect Plus
				2,6 A*
19	Product ID	max 64 Bytes	RO	36179*
20	Product Text	max 64 Bytes	RO	OMUS®C14 Connect Plus
				2,6 A IO-Link*
21	Serial Number	max 16 Bytes	RO	00001*
22	Hardware Revision	max 64 Bytes	RO	01:06:07* (CB:PB:DB)
23	Firmware Revision	max 64 Bytes	RO	V0.6.0.3*
24	Application Specific	32 Bytes	RW	"***" (string)
	Tag			
25	Function Tag	32 Bytes	RW	"***" (string)
26	Location Tag	32 Bytes	RW	"***" (string)
32	Error Count	2 Bytes	RO	-
36	Device Status	1 Byte	RO	- (current device status)
37	Detailed Device Status	21 Bytes	RO	- (currently pending events)
40	Process Data Input	10 Bytes	RO	-
41	Process Data Output	1 Byte	RO	-

* Example

19.4 Acyclic process data (ISDU-Parameter) – Device specific

19.4.1 Device – Configuration

ISDU- Index	Name	Data- type	Length (Bytes)	Description	Access
256	Operation mode	uint8	1	0: 3~ operation 1: 1~ operation	Read Write
302	Automatic error acknowledgement in case of overload	uint8	1	0: Disabled 1: Enabled Automatic error acknowledgement in case the thermal load falls below 75% and an overload error was triggered previously	Read Write

19.4.2Device – Measurement

ISDU-		Data-	Length		
Index	Name	type	(Bytes)	Description	Access
68	Load current L1 (RMS)	uint16	2	Unit in 100mA	Read only
69	Load current L2 (RMS)	uint16	2	Unit in 100mA	Read only
70	Load current L3 (RMS)	uint16	2	Unit in 100mA	Read only
71	Supply voltage L1 (RMS)	uint16	2	Unit in 10mV	Read only
72	Supply voltage L2 (RMS)	uint16	2	Unit in 10mV	Read only
73	Supply voltage L3 (RMS)	uint16	2	Unit in 10mV	Read only

19.4.3 3-Phase Operation – Configuration

ISDU-		Data-	Length		
Index	Name	type	(Bytes)	Description	Access
66	Nominal current	uint8	1	Unit in 100mA Maximum value: 26: 2,6A device 66: 6,6A device	Read Write
67	Trip class	uint8	1	8: Resistive	Read Write
263	Undercurrent detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
267	Undercurrent detection – Threshold	uint8	1	Unit in 100mA Maximum value: Actual set nominal current	Read Write
271	Undercurrent detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
275	Undervoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
279	Undervoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
283	Undervoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
287	Overvoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
291	Overvoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
295	Overvoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
299	Load asymmetry detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write

300	Load asymmetry detection – Threshold	uint8	1	Unit in 100mA Maximum value: Actual set nominal current	Read Write
301	Load asymmetry detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write

19.4.4 Single-Phase Operation – Configuration L1

ISDU-	Nomo	Data-	Length	Description	A
257	Nominal current	uint8	(bytes) 1	Unit in 100mA Maximum value: 26: 2,6A device 66: 6,6A device	Read Write
260	Trip class	uint8	1	8: Resistive	Read Write
264	Undercurrent detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
268	Undercurrent detection – Threshold	uint8	1	Unit in 100mA Maximum value: Actual set nominal current	Read Write
272	Undercurrent detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
276	Undervoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
280	Undervoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
284	Undervoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
288	Overvoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
292	Overvoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
296	Overvoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write

ISDU-		Data-	Length		
Index	Name	type	(Bytes)	Description	Access
258	Nominal current	uint8	1	Unit in 100mA Maximum value: 26: 2,6A device 66: 6,6A device	Read Write
261	Trip class	uint8	1	8: Resistive	Read Write
265	Undercurrent detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
269	Undercurrent detection – Threshold	uint8	1	Unit in 100mA Maximum value: Actual set nominal current	Read Write
273	Undercurrent detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
277	Undervoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
281	Undervoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
285	Undervoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
289	Overvoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
293	Overvoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
297	Overvoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write

19.4.5 Single-Phase Operation – Configuration L2

ISDU-	Nouse	Detetares	Length	Description	
Index	Name	Datatype	(Bytes)	Description	Access
259	Nominal current	uint8	1	Maximum value: 26: 2,6A device 66: 6,6A device	Read Write
262	Trip class	uint8	1	8: Resistive	Read Write
266	Undercurrent detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
270	Undercurrent detection – Threshold	uint8	1	Unit in 100mA Maximum value: Actual set nominal current	Read Write
274	Undercurrent detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
278	Undervoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
282	Undervoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
286	Undervoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write
290	Overvoltage detection – Enable	uint8	1	0: Disabled 1: Enabled	Read Write
294	Overvoltage detection – Threshold	uint16	2	Unit in 10mV Maximum value: 600V	Read Write
298	Overvoltage detection – Fault Type	uint8	1	0: Warning 1: Error	Read Write

19.4.6 Single-Phase Operation – Configuration L3

19.5 System Commands – IO-Link-Standard

The commands listed below are specified by the IO-Link specification and implemented in the device:

Command	Name
128	Device Reset
129	Application Reset
130	Restore factory settings

20 Technical Data

Device supply	
Rated control circuit supply voltage Us	24 V DC
Control supply voltage range	20,4 V DC - 26,4 V DC
Rated control supply current Is	200 mA
Protective circuits	Overvoltage protection
	Reverse polarity protection
Digital input in acc. IEC 60947-1 Annex S	
Rated actuating voltage U _c	24 V DC
Rated actuating current I _c	7 mA
Switching level	< 6 V ("0"/Low-Signal)
	>12 V ("1"/High-Signal)
Switch-On time typ.	< 20 ms
Switch-Off time typ.	< 20 ms
Maximum switching frequency	20 Hz
AC output	
Rated operational voltage range U _e	130 V AC - 500 V AC
Rated insulation voltage U _i	500 V AC
Load current range, see 18 Derating	0,1 - 2,6 A / 0,1 A - 6,6 A
Maximum starting current	35A (2,6 A) / 56A (6,6 A)
Rated conditional short-circuit current Iq	100 kA (coordination type 2,
	without additional fuse)
SCCR	100 kA
Trigger characteristic	Resistive
Tripping current	110% Nominal current
Overload cooling time	Dynamic, see cool down time
	(chapter 16)
100% to 75% (Resistive, nominal current 1 A)	3.46 s
100% to 75% (Resistive, nominal current 3 A)	3.46 s
Thermal capacity at operation with nominal	75%
current	
Rated operating current Ie AC-53a	2,6 A / 6,6 A
Rated operating current le AC-51	2,6 A / 6,6 A
Leakage current	0,5 mA
Protective circuits	Overvoltage protection
	Varistors
	•

Indication of main button LEDs	
Ready for Operation	white
Operation Mode (Forward / Backward)	green
Warning	yellow
Error	red

General data	
Mounting position	vertical (horizontal DIN rail, load output below)
Mounting	alignable, for spacing see Derating (chapter 18)
Operation mode	100 % ED
Protection class	IP20
Power Loss min./max.	6 W / 11 W (2,6 A), 21 W (6,6 A)
Dimensions W / H / D	22,5 mm / 160 mm / 132,5 mm
Warning relay	NO: 277 Vac, 1 A
	30 Vdc, 2 A (4 A up to 40 °C)
Error relay	CO: 277 Vac, 1 A
	30 Vdc, 2 A (4 A up to 40 °C)

Connection data	
Designation of connection	Control circuit
Connection type	Push-in connection
Conductor cross section flexible without ferrule	0,2 - 1,5 mm²/AWG 24 - 16
Conductor cross section flexible with ferrule	0,25 - 1,5 mm²/AWG 24 - 16
without plastic sleeve	
Conductor cross section flexible with ferrule with	0,14 - 0,75 mm²/AWG 26 - 18
plastic sleeve	
Conductor cross section solid	0,2 - 1,5 mm²/AWG 24 - 16
Stripping length	10 mm
Designation of connection	Load circuit
Connection type	Screw connection
Tightening torque	0,5 - 0,6 Nm / 5 lb _f -in 7 lb _f -in.
Conductor cross section flexible without ferrule	0,2 - 2,5 mm² (f)/AWG 24 - 12
Conductor cross section flexible with ferrule	0,2 - 2,5 mm² (f+AE)/AWG 24 - 14
without plastic sleeve	
Conductor cross section flexible with ferrule with	$0.2 - 2.5 \text{ mm}^2 (f_1 \Lambda E) / \Lambda M C - 24 - 44$
	0,2 - 2,3 mm² (I+AE)/AVVG 24 - 14
plastic sleeve	0,2 - 2,3 mm- (I+AE)/AWG 24 - 14
plastic sleeve Conductor cross section solid	0,2 - 2,5 mm² (re)/AWG 24 - 14

Ambient conditions	
Ambient temperature (operation)	-5 °C - +55 °C (note derating)
Relative humidity r.H.	5 - 95 %, non condensing
Ambient temperature (storage/transport)	-40 °C - +70 °C

Standards / regulations	
Standards	IEC / EN 60947-4-2
	IEC / EN 60947-1
UL approval	E510845
For use with Adapters	MCC-60-2, MCC-30-2, MCC-PA-2

Insulation properties	
Rated insulation voltage	500 V
Rated surge voltage	4 kV
Overvoltage category (incl. requirement for safe separation)	
at maximum rated operational voltage to earth ≤ 300 V	-
at maximum rated operational voltage to earth ≤ 500 V	-
Overvoltage category (without requirement for safe separation)	
at maximum rated operational voltage to earth ≤ 300 V	I - IV
at maximum rated operational voltage to earth ≤ 500 V	-
Degree of pollution	2

-Diese Seite ist absichtlich leer gelassen-

-This page is intentionally left blank-

-Diese Seite ist absichtlich leer gelassen-

-This page is intentionally left blank-

Wöhner GmbH & Co. KG Elektronische Systeme Mönchrödener Straße 10 96472 Rödental Germany

Phone +49 9563 751-0 info@woehner.com woehner.com